
 

 

Quantitative Study of Storm Surge Risk Assessment in Undeveloped Coastal Area of China  

Based on Deep Learning and Geographic Information System (GIS) Techniques: A Case  

Study of Double-Moon Bay Zone  

Lichen Yu a, d, Shining Huang c, Hao Qin *, a, d, Wei Wei a, d, Lin Mu *, b  

a Hubei Key Laboratory of Marine Geological Resources, College of Marine Science and  

Technology, China University of Geosciences, Wuhan, China, 430074  

b College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 518060  

c Marine Information Center, Department of Natural Resources of Huizhou Bureau, Huizhou,  

China, 516003  

d Shenzhen Research Institute, China University of Geosciences, Shenzhen, China, 518057  

  

* Corresponding authors: Hao Qin (qh1qh100@alumni.sjtu.edu.cn); Lin Mu (moulin1977@h 

otmail.com).  

  

Abstract  

Storm surge is a common nature disaster in China southern coastal area, which usually causes  

heavy human life and economic losses. With the economic development and population  

concentration of coastal cities, the storm surges may result in more impacts and damage in the  

future. Therefore, it is of vital importance to conduct risk assessment to identify high-risk areas  

and evaluate economic losses. However, quantitative study of storm surge risk assessment in  

undeveloped areas of China is difficult, since there is a lack of building characters and damage  

assessment data. Aiming at the problem of data missing in undeveloped areas of China, this paper  

proposes a methodology for conducting storm surge risk assessment quantitatively based on deep  

learning and geographic information system (GIS) techniques. Five defined storm surge  

inundation scenarios with different typhoon return periods are simulated by coupled  

FVCOM-SWAN model, the reliability of which is validated using official measurements. Building  

footprints of the study area are extracted through TransUNet deep learning model and Remote  

Sensing Image (RSI), while building heights are obtained through Unmanned Aerial Vehicle (UAV)  

measurement. Subsequently, economic losses are quantitatively calculated by combing the  

adjusted depth-damage functions and overlay analysis of the buildings exposed to storm surge  

inundation. Zonation maps of the study area are illustrated to display the risk levels according to  

the economic losses. The quantitative risk assessment and zonation maps can help the government  

to make storm surge disaster prevention measures and optimize land use planning, and thus to  

reduce the potential economic losses of the coastal area.  

  
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  

1. Introduction  

 Storm surge, defined as the abnormal rise of water over and above the normal astronomical  

tide, and is expressed in terms of height above predicted or expected tide levels. Mostly, the surge  

is generated by a strong atmospheric disturbance, and it becomes particularly catastrophic when it  

happens to coincide with an astronomical high tide. In that case, the surge-driven coastal flooding  

may inundate buildings and cropland, cause significant casualties and economic losses. Storm  

surges have caused widespread damage worldwide. In 2013, super typhoon Yolanda as the worst  
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typhoon in last 30 years, pounded the Philippines. It caused 6293 individuals reported dead, 28689  

injuries and 1061 individuals missing, with estimated damages totaling 864 million US dollars  

(Mcpherson, 2015). Hurricane Harvey struck Texas in August 2017, resulting in approximately  

100 deaths and economic losses exceeding 125 billion dollars (Lee, 2021). In China, storm surges  

also pose a frequent threat in the coastal cities. In the last decade, China has experienced an  

average of 8.5 storm surge disasters annually, with an average damage amount of 6815.8 million  

yuan per year, where Guangdong and Zhejiang Provinces are the most affected coastal areas  

(China Marine disaster bulletin, 2022). For example, Typhoon Hato in 2017, Typhoon Mangkhut  

in 2018, Typhoon Lekima in 2019 has caused significant damage to coastal cities in China, and  

resulted great losses of life and property. For the past few years, as the rapid development of  

population and economic in China coastal area, the potential monetary loss grows accordingly  

(Fang et al., 2021; Ji et al., 2020; Mcgranahan et al., 2007; Seto et al., 2011). Therefore, it is  

crucial to implement risk assessment and mapping strategies to effectively reduce these risks and  

mitigate the impact of storm surges.  

 Storm surge hazard assessment is an essential component of storm surge risk assessment and  

zoning, aiming to evaluate the hazard intensity of disasters, through numerical simulation of storm  

surge processes, estimation of storm surge for selected return periods, and computation of the  

probable maximum storm surge (Shi et al., 2013). Therefore, the numerical simulation of storm  

surge is a key step for storm surge risk assessment. However, because of the limitation of  

historical storms and the nondeterminacy of future storm, numerical simulation of storm surges is  

usually used to determine storm levels. Advanced Circulation Mode (ADCIRC) is a widely used  

hydrodynamic model in coastal area. For example, Vijayan et al. (2021) utilized ADCIRC model  

to simulate storm surges and tides during the hurricane that land on Florida in 2018, for the  

purpose of comparing the different impact of wind model Holland 1980 and Holland 2010. Wang  

et al. (2021a) and Liu and Huang (2020) used ADCIRC and Simulating Waves Nearshore (SWAN)  

coupled model respectively simulate the storm surge and wave in the sea near Shandong Peninsula  

and Taiwan, and the hazard assessment and model verification were carried out respectively.  

Delft3D is a comprehensive numerical modeling system for simulating hydrodynamic processes.  

Hu et al. (2022) adapted a pre-validated Delft3D-based hydrodynamic model proved the impact of  

levee opening at selected locations was minor. Lyddon et al. (2019) used Delft3D-FLOW-WAVE  

model calculate the tide and wave in the Severn Estuary, the result pointed out the importance of  

locally generating winds in simulation of water level and wave height. Finite Volume Coastal  

Ocean Model (FVCOM) is another widely used numerical model for simulating hydrodynamic  

processes. Zhang et al. (2020) conducted a series of modeling experiments with the purpose of  

assessing the impact of storm and evaluated the flood protection by using FVCOM inundation  

model. Zhu et al. (2022) realized WRF-SWAN-FVCOM coupling simulation to analyze the  

spatial-temporal evolution laws, and the result demonstrate the method can predict hydroelastic  

responses of the maritime airport under the impact of typhoons, currents and waves.  

It has been demonstrated that it is critical to include tide and sea-water-level variations in  

shelf and nearshore wave simulations (Masson, 1996). Furthermore, the sea water level could be  

significantly affected by strong tide and typhoon-induced wind in complex coastal seas and then  

modulate the wave properties (Yang et al., 2020). Coupled FVCOM-SWAN model, with the  

foundation of FVCOM's finite volume method, unstructured grid, and adaptable boundary  

condition handling capability, integrating the hydrodynamic and wave processes of SWAN,  
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possesses the ability to provide simulation result more quickly and accurately. In this circumstance,  

coupled FVCOM-SWAN model is used in this research for simulating the inundation of storm  

surge.  

 Coastal risk assessment can be categorized into two primary classifications: qualitative and  

quantitative. In the realm of qualitative assessment, entropy weight method, Analytic Hierarchy  

Process (AHP) and other methods are widely used. Ramkar and Yadav (2021) used AHP in  

combination with Geographic Information Systems (GIS) for proposing a flood risk map, which  

can identify the high-risk areas efficiently. Malekinezhad et al. (2021) combined the entropy  

weight method and GIS, and conducted a flood vulnerability analysis for Hamadan city. The result  

highlighted the advantages of entropy weight method comparing to normal spatial overlay method.  

Besides, Pathan et al. (2022) and Rafiei-Sardooi et al. (2021) made use of Technique for Order  

Preference of Similarity by Ideal Solution (TOPSIS). The former pointed out the advancement of  

TOPSIS by comparing with AHP, and the latter combined machine learning and TOPSIS to  

analyze urban flood vulnerability. Unlike qualitative risk assessment, quantitative risk assessment  

enables the quantification of damages and risks in monetary terms. The most commonly used  

approach to assess direct damages is based on depth-damage curves (De Moel and Aerts, 2011;  

Merz et al., 2007; Smith, 1994). Thieken et al. (2008) presented the Flood Loss Estimation Model  

for the private sector (FLEMOps) through using the Germany flood losses data in August 2002,  

and the group further established model for commercial sector in 2010 (Kreibich et al., 2010).  

Zhai et al. (2005) derived multi-factor loss functions for buildings in Nagoya, Japan using  

empirical data from Tokai flood in 2000, and Grahn and Nyberg (2014) established functional  

relationships utilizing the house insurance claims data caused by lake flooding. Except for  

buildings, Yazdi and Salehi Neyshabouri (2012) and Hess and Morris (1988) respectively built  

several uni-variable functions and multi-factor functions for kinds of crops and grassland. In  

recent years, machine learning is also introduced in quantitative loss assessment, for example,  

Merz et al. (2013) developed a tree-based approach using Regression Tree and Bagging  

Regression Tree as machine-learning methods to analysis of direct building damage to private  

homes. Paprotny et al. (2020) proposed a Bayesian Network damage model (a  

Supervised-Machine-Learning method), and reached a good accuracy of predictions of building  

losses.  

The essence of quantitative risk assessment lies in analyzing the interaction between  

exposure factors and hazards (Adnan et al., 2020; Armenakis and Nirupama, 2013; Granger, 2003;  

Kron, 2005), therefore it’s crucial to quantify the direct tangible damage of elements at risk.  

Buildings are important exposure elements, as they are the gathering place of population and  

property. Building footprint data is necessary for evaluating the vulnerabilities of a building, as it  

provides essential information about the buildings, including spatial location, distribution, and  

boundaries and so on (Mharzi Alaoui et al., 2022). It’s also of great significance in risk assessment,  

primarily due to its ability to identify high-risk areas, assess building vulnerability and estimate  

potential damage (Gacu et al., 2023; Wu et al., 2019). Extracting building footprints from remote  

sensing images has been widely used in many fields. For example, in urban planning, Zhou et al.  

(2004) used building footprint data and LiDAR point cloud data for urban 3D modeling; Tang et al.  

(2006) proposed a GIS-based landscape index combing with remote sensing to analyze urban  

sprawl spatial fragmentation. In disaster management, Liu et al. respectively evaluated seismic  

vulnerability in Urumqi and Weinan in China (Liu et al., 2019; Liu et al., 2020). In navigation,  

https://doi.org/10.5194/nhess-2023-199
Preprint. Discussion started: 25 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

Rousell and Zipf (2017) proposed a prototype navigation service based on multi-index in OSM  

dataset and building footprints, and Chen and Gao (2019) merged GPS pseudorange, LiDAR  

odometry measurements and building footprint to offer a UAV navigation algorithms. However,  

there is a lack of building footprints extraction and application in the realm of storm surge  

assessment.   

In view of the aforementioned information, regarding storm surge qualitative risk assessment,  

there is a stringent requirement for both the quality and timeliness of land use data, which means  

that the risk assessment cannot be generated in real time, and the qualitative risk assessment also  

can’t evaluate the risk level through the intuitive value of economic loss. In the realm of  

quantitative risk assessment, building a uni-variable or multi-factor empirical model requires  

complete and substantial data, and the published models generally only provide uni-variable  

functions ignoring the building height as a factor, or have regional limitations. Additionally, for  

the coastal regions of China, which are often affected by storm surge disasters, they tend to have  

relatively low levels of economic development. Under the circumstances, the data needed to  

conduct flood risk assessment is generally in a state of absence.  

In response to the challenges mentioned above, the scientific goal of this paper is to propose a  

quantitative storm surge risk assessment method for underdeveloped areas based on deep learning  

and GIS techniques. First, on the basis of high-resolution DEM and seawall data measurement,  

five defined storm surge inundation scenarios with different typhoon return periods are simulated  

by employing the coupled FVCOM-SWAN model. Subsequently, TransUNet is introduced as a  

deep learning method to extract building footprint, and building’s height data is acquired through  

UAV measurement. Since data on relevant disaster losses in underdeveloped regions are lacking,  

empirical modeling was deemed impractical. Therefore, the adjustment of the JRC’s  

depth-damage curves by the HAZUS is chosen to take the impact building's height into  

consideration, thus to conduct a quantitative assessment with more accuracy. Finally, combining  

hazard map, exposure elements and adjusted depth-damage curves, the quantitative risk zoning  

maps are conducted. The risk zoning maps can assist decision-makers in identifying high-risk  

sub-zones and planning disaster prevention measures. Accordingly, the novelty can be seen in  

obtaining refined exposure elements data through deep learning and UAV, addressing the lack of  

historical storm surge economic loss data and considering the effect of building height on  

economic loss through the adjustment of existing depth-damage curves.  

2. Study area and datasets  

2.1. Study area  

 Being the shipping hub in the South China Sea, Guangdong province, located in southern  

China, has become the largest economic province in China since 1989, with a GDP of 129118.6  

billion yuan in 2022. Due to the seaborne trade, Guangdong has been the largest economic  

province in China since 1989, which reached a GDP of 129118.6 billion yuan in 2022. However,  

just as mentioned above, Guangdong is relatively vulnerable to storm surges because of its  

geographical characteristics, such as Typhoon Hato and Typhoon Mangkhut.  

 Huizhou is one of the cities in Guangdong province, and also one of the central cities of Pearl  

River Delta region. It’s located at on the east coast of Guangdong-Hong Kong-Macao Greater Bay  

Area, the GDP reached 540.1 billion yuan in 2022, with the highest growth rate in Guangdong.  

Pinghai Town located at the southernmost of Huizhou, and has a registered population of about  

forty thousand. Its economic source mainly depends on various crops and seafood products. Due  
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to its coastal geographical characteristics and the presence of Pinghai Ancient City, the town has  

become a cultural tourist destination and can therefore be defined as a cultural tourist town.  

  In this paper, the chosen study region is the coastal area of Pinghai town, named the  

Double-Moon Bay Zone. It covers ten villages in total, including Foyuan, Dayuan, Yuye, Xinliao,  

Xin village, Shazuiwei, Cajia, Nanshe, Daao, and Harbor community. These years, the region has  

been developed in tourism and real estate project development including construction of hotel,  

resort, and high-end business district, which vastly prompt the financial development. It is  

foreseeable that the population and economy of the region will growth rapidly. However, the  

region's general economic status, which remains relatively low, and it consequently gives rise to  

the challenge of data scarcity and limited accessibility. In addition, the region is susceptibly  

affected by the tropical cyclones during the season running from April to November (Wang et al.,  

2021b). Recent years, more than ten typhoons have affected the study area, including Typhoon  

Lekima, Typhoon Haishen, Typhoon Kanuni etc. The general location and information about the  

study area is shown on Fig. 1.  

  

Fig. 1. The maps of locations in the study: (a) The map of Huizhou; (b) The map of study area in  

Huidong, the base map is obtained from ESRI; (c) The village map of study area, the base map is  

obtained from © GoogleMaps (map data © 2023 Google).  

  

2.2. Data source  

 In order to accomplish the research, the data used is obtained from various sources, here is  

the describe of different data:  

(1) Land Cover Types data: the data is obtained from the Department of Natural Resources of  

Huizhou Bureau. It contains multiple land cover types including forest, cropland, residential land,  

etc. It is used to calculate vulnerability level.  
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(2) Remote sensing images: the remote sensing images are obtained from Chang Guang  

Jilin-1 satellite. Chang Guang Satellite technology CO., LTD was founded on December 1st 2014,  

which is the first and the largest commercial satellite corporation in China. Jilin-1 is the first  

self-developed commercial high-resolution satellite. The images from Jilin-1 satellite have a  

resolution of 50 cm, and have five spectral channels: Panchromatic band; Blue band; Red band;  

Green band; Near Infrared band. The images consisting of blue band, red band, green band are  

utilized to combine deep learning method, thus achieve the extraction of buildings.   

(3) Unmanned Aerial Vehicle (UAV) data: the UAV data is generated by oblique photography,  

and is organized by Open Scene Graph Binary format. The UAV data is obtained from Department  

of Natural Resources of Huizhou Bureau, and the data is utilized for buildings’ height calculation.  

(4) Digital elevation model (DEM) data: the DEM data is captured by manual observation in  

2018, with the resolution of 0.3m. The coordinate system and file organization are originally  

CGCS 2000 and txt file, and further transformed to WGS 1984 and raster format to make use of  

these data in the research. The data contains the elevation information for the study region.  

Besides, the seawall data is also obtained manually. Both data are used in modeling of storm  

surges for simulating the hazard maps.  

(5) ERA5 data: ERA5 is the fifth generation of the European Reanalysis dataset produced by  

the European Centre for Medium-Range Weather Forecasts (ECMWF), and it provides the  

comprehensive and high-resolution atmospheric and climate data. In this study, the data is used in  

conjunction with the Holland method to generate fused wind field data, which is subsequently  

utilized for storm surge simulations.  

(6) Historical typhoon data: the historical typhoon data including typhoon track, typhoon  

pressure, and velocity are obtained through China Meteorological Administration Typhoon  

Network Website. The historical data is employed to assess the reliability and validity of the  

model.  

(7) Administrative Boundary data: the data is obtained from National geographic information  

public service platform, and it contains administrative boundaries at village level. There are ten  

villages in the study area.  

  

3. Method  

 The methods in this study aim to assess quantitative direct tangible damage over the study  

area consists of following steps: hazard assessment; exposure assessment; vulnerability  

assessment; risk assessment, and the flowchart of the procedure is illustrated in Fig. 2.  

 First, with respect to hazard assessment, five storm surge scenarios are defined. After  

constructing wind field through Holland model, the inundation area and depth of different typhoon  

return periods are simulated by utilizing the coupled FVCOM-SWAN model. In exposure  

assessment, building footprints and heights are extracted by introducing a deep learning method  

TransUNet and shadow calculation. Then the hazard maps are overlaid to identify the elements at  

risk. Considering the effect of building’s floor in flood monetary loss estimation, the JRC’s  

depth-damage functions are adapted representing the vulnerability of different exposed elements.  

Eventually, the economic loss of different typhoon scenarios can be summarized and the risk  

assessment is conducted through multiplying the temporal probability. Moreover, the quantitative  

zoning maps of four risk levels are generated through zonal statistic.  
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  

Fig. 2. The flowchart of the presented storm surge quantitative risk assessment method. The base  

map is obtained from © GoogleMaps (map data © 2023 Google).  

  

3.1. Strom surge inundation simulation  

Finite Volume Coastal Ocean Model (FVCOM), is a coastal ocean circulation model, which  

was originally developed by Chen et al. (2003), and further improved by the University of  

Massachusetts and the Woods Hole Oceanographic Institution. The following are the governing  

equations of FVCOM, comprising momentum, continuity, temperature, salinity, and density  

equations:  
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 Where x , y  and z  respectively represent the east, north and vertical coordinate axes in the  

Cartesian coordinate system; u , v  and w  are the velocity components in x , y  ,  

z  directions; T  , S  and   are the temperature, salinity and density; P  is the pressure and  

f  stands for the Coriolis parameter; mK  is the vertical eddy viscosity coefficient and hK  is  

the vertical eddy diffusivity coefficient for heat; g  is the gravitational acceleration; uF , vF ,  

TF , and SF  are the horizontal diffusion terms.  

 Simulating Waves Nearshore (SWAN) is the third-generation offshore wave model developed  

by Delft University of Technology and it was originally proposed by Booij et al. (1996). The  

governing equation of the model is shown as  

 
x y

S
N C N C N C N C N

t x y
 

    

     
+ + + + =  () 

 Where N  is the wave action density;   is the propagation direction; xC , yC  are  

respectively the x , y  components of propagation speed and C , C  are the  ,  

  components of propagation cospeed;   and S  respectively represent the frequency and the  

source term for the wave energy.  

FVCOM and SWAN both use the unstructured triangular grid to subdivide the South China  

Sea, and the latitude and longitude range of the region is 13°N - 29°N, 109°E-122°E. The SWAN  

parameters are set as follows: wind input growth term and whitecap dissipation term are the  

Komen scheme; Bottom friction dissipation is parameterized using the Madsen vortex viscosity  

model; The nonlinear interactions are implemented using three-wave and four-wave nonlinear  

interaction schemes. The input wind field is the fusing wind field derived from ERA5 and the  

Holland method. The open boundary forced tidal elevation of FVCOM is conducted by calculating  

the harmonic constants for the eleven major astronomical tidal constituents, namely M2, N2, S2,  

K2, K1, O1, P1, Q1, MS4, M4, and M6. The forcing field is the fusing wind field and the wave  

data generated by SWAN. The external model time step for the model is set to 0.75 second, while  

the internal model time step is set to 7 seconds.  

In the present study, FVCOM-SWAN coupling method is utilized for simulating the  

inundation caused by storm surge. Specifically, following the modification of typhoon Mangkhut's  

central pressure, velocity, and track data, the data is utilized as input for the Holland typhoon wind  

field model, subsequently yielding the wind field outcome. The wind field data extracted is fed  

into the SWAN model to generate wave data. Then, both the wind data and wave data are input  

into the FVCOM model to calculate the extent of inundation.  

   

3.2. Buildings extraction  

The deep learning model used in the research is TransUNet (Chen et al., 2021), which was  

originally proposed for medical images segmentation. TransUNet incorporates transformer in  

encoder within the architecture of U-shape network, consequently makes use of the advantage of  

global information extraction while fusing the superficial and deep features. On the mission of  

building extraction, the target is to segment the building’s area precisely. The TransUNet model  

can effectively identify the boundary between buildings and background, which enables the model  

to be competent for extracting the buildings in different size and shape.  
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The following is relevant introduction of the structure of the model.  

3.2.1. Transformer in TransUNet  

Transformer was first proposed by Sutskever et al. (2014), which was originally utilized for  

machine translation. However, as more variants of transform were developed, people found  

transform also perform well in multiple tasks, such as natural language processing (NLP),  

computer vision (CV) and automatic speech recognition (ASR).  

The transformer encoder is composed of L layers of Multi-head Self-Attention (MSA), Layer  

normalization (LN) and Multi-Layer Perceptron (MLP), the structure is shown in the Fig. 3(a), and  

the equations of Query-Key-Value (QKV) self-attention and MSA are shown below:  

 T

Attention( ) softmax( )

k

QK
Q,K,V V

D
=  (3.9) 

 
1MultiHeadAttn( ) Concat(head ,...,head ) O

HQ,K,V W=  (3.10) 

 head Attention( , , )Q K V
i i i iQW KW VW=  (3.11) 

Where Q  K  V are respectively the Query, Key, Value vector. kD  is the scaled dot-  

-product attention. O
W  Q

iW  K
iW  V

iW are respectively the corresponding linear mapping, which  

convert Q  K  V  and the output to the specified dimension.  

The MSA has a positive effect on helping the model identify the target objects and  

background, thus the neutral network can learn more information form the target. LN is deemed to  

stabilize the deep network training, which can prevent unstable gradient, model degradation, etc.  

The module receives the 2d flatted patches from the image’s patches. Due to it is different from  

CNN or RNN, apart from map the vectorized patches to D-dimensional embedding space,  

transformer needs to apply additional position encoding for retaining the patch’s positional  

information.  

3.2.2. Structure of TransUNet  

 The overall structure of TransUNet is reference to U-Net, which is a U-shaped  

Encoder-Decoder structure, and the structure diagram is shown in the Fig. 3(b).   

 Encoder: the origin image is put into the CNN part for feature extraction, after the processing  

of position encoding and flatten, the patches are further put into the transformer module. The  

transformer module consists of 12 transformer layers. The CNN part is implemented through  

using resnet50, which include 3 blocks in total, and each block output the hidden feature for skip  

connection.  

 Decoder: reshape the output sequence from encoder and then cascade up-sampling after  

transforming the number of channels. During the process, the skip connection is introduced by  

using the feature map hereinbefore. In the end, the segmentation result is generated.  

 In conclusion, TransUNet is the combination of U-Net and transformer, which is designed to  

make use of the advantage from both structures. The Global Attention from transformer can  

contribute to learn the global information, while the skip connection from U-shape network can  

contribute to get more information from shallow feature map output from CNN, and also CNN  

performs better in extracting the local information. In this research, buildings images are similar to  

medical images, with the features like high complexity level, large range of gray values. The skip  

connection structure can simultaneously acquisition of low-level semantic features and high-level  

semantic features, and transformer can conduce identify the buildings from background, thus  

TransUNet achieves a high accuracy in buildings segmentation.  
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  

              (a)                                    (b)  

Fig. 3. The overview of TransUNet framework (adapted from (Chen et al., 2021)): (a) Schematic  

diagram of Transformer layer; (b) Structure diagram of TransUNet  

  

3.3. Building’s height acquisition  

 UAV tilt photography modeling technology can combine control points encryption from  

massive image data with a small number of ground control points to obtain accurate external  

orientation elements (Kang et al., 2020). The conducted 3D model reflects the truly condition of  

the ground, and the data is selected to be in the WGS 1984 coordinate system. The ground  

resolution is one of the most intuitive and important parameters in tilt photography, and it’s also a  

key factor determining the quality of the 3D modeling. In the process of performing aerial  

triangulation for tilt-image automation, it is necessary to ensure that the resolution of the different  

images is as consistent as possible while taking into account the resolution of the side-view image,  

thus to ensure accuracy and image overlap. Hence, the combinatory analysis of image resolution at  

tilted viewing angle is required. The tilted image center point, near point and far point resolutions  

are expressed as follows:  
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 Where   is sensor cell size, h  is flight height, f  refers to the camera focal  

length, y
 
and y  are respectively dip angle and half the angle of view. Normally, the ground  

resolution at the center of the tilted and vertical images should be comparable, and the minimum  

resolution of tilted images should less than three times the resolution of a vertical image.  

There are multiple formats available for storing 3D models, including OBJ, STL, FBX,  
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OSGB, etc. In this study, the generated 3D model is saved as OSGB format. OSGB format is  

originally proposed by Ordnance Survey for storing the geographic spatial data in the British. It  

combines binary encoding and compression algorithms to improve the data storage and  

transmission efficiency. Normally, the OSGB data contains information of geographic coordinates,  

elevation, texture mapping, and geometric shapes, which can be used to GIS application, virtual  

reality (VR), among others.  

 Digital surface model (DSM) is a digital terrain model that contains more elevation  

information about trees, buildings, and bridges. Compare to DEM, DSM can reflect the truly  

surface condition of earth, thus DSM has a wide range of application in city management or forest  

stewardship. In this research, the UAV data can be transformed to DSM data by using SuperMap  

software, and the DSM result is shown in Fig. 4(b). After generating the DSM, the elevation of the  

roof of the building and the corresponding elevation of the ground around the building are  

extracted by manual selection, then the height of buildings can be calculated by using equation  

(3.15).  

 Roof GroundDSM DSM H− =  (3.15) 

Where RoofDSM  is the DSM value of the building’s roof, GroundDSM  represents the  

corresponding DSM value of ground, and H  is the result of building’s height.   

                     (a)                                     (b)  

Fig. 4. Building’s height acquisition: (a) The schematic diagram of UAV tilt photography data; (b)  

The generated DSM results for Building height data extraction.  

  

3.4. Exposure and vulnerability assessment  

 The process of storm surge risk assessment involves two key components: exposure and  

vulnerability. The exposure represents the elements exposed to hazardous spaces, while the  

vulnerability refers to the level of the exposure elements’ susceptibility to damage. When doing  

exposure assessment, the disaster-affected elements can be conducted by overlaying the building  

footprint data and land cover data with the hazard layer, which is the inundation data in this  

research. The process can be accomplished using overlay analysis in ArcGIS software.   

3.4.1. Adaptation of flood vulnerability functions.  

 Constructing an empirical stage-damage curve is a commonly used method for conducting  

vulnerability assessments. However, as is mentioned above, China lacks of the data about flood  

loss or insurance compensation in flood disasters, as a result, it’s not practicable to develop  

exclusive functions for the study region, so the depth-damage functions developed by Huizinga,  

Joint Research Center (JRC) (Huizinga et al., 2017) are introduced. The depth-damage functions  
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manifest the loss ratio of the exposure elements in different inundation depth from 0 to 6 m, and  

the ratio range from 0 to 1, which represents no damage to fully damaged. Besides, JRC also  

provides the maximum economic losses per square meter for six different exposure element types  

including residential, industrial, infrastructure, road, agricultural land, and transport. In this study,  

the original functions and maximum loss data for China region are used, and the economic loss  

can be calculated by multiplying the loss ratio, the maximum loss, and the disaster-affected area.  

 The building’s height is an important factor in flood loss estimation, normally the damage  

ratio decreases as the number of floors increases (Taramelli et al., 2022). However, the JRC’s  

vulnerability functions do not provide the specific function of each height category. In this case,  

the depth-damage functions in HAZUS are introduced. HAZUS is first released for earthquakes in  

1997 by Federal Emergency Management Agency (FEMA), and that's when the HAZUS Flood  

Model started to be developed (Scawthorn et al., 2006). In 2004, a multi-hazard version called  

HAZUS-MH was a standardized GIS-based model that included the earthquake, flood, and  

hurricane models (Nastev and Todorov, 2013). The HAZUS-MH flood model is designed  

primarily for local and regional hazard planners and emergency managers for developing  

emergency management plans and mitigation strategies (Tate et al., 2015). However, the  

depth-damage functions in HAZUS-MH are restricted to regions within America, hence the  

HAZUS’s functions are introduced to adapt JRC’s functions.  

 The approach to modifying functions is refered to the method proposed by Dabbeek et al.  

(2020). In the process, the HAZUS loss ratios of each height category (one-story, two-story, three  

and more-story) are averaged, which is shown in equation (3.16). Then the contribution of each  

height category relative to the average loss is calculated as equation (3.17) shows. In the end,  

multiplying the value obtained in the previous step by JRC’s vulnerability functions yields the  

adapted functions for each height category.  
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Where i,hd  represents to the loss ratio at the inundation depth i  for each height category  

h  iD  is the average loss ratio of all heights.  

  

3.4.2. Quantitative risk assessment  

 The quantitative financial loss estimation is accomplished by overlaying the following data:  

the inundation simulation result generated by FVCOM and SWAN modeling, the spatial  

distribution of three types of exposure elements, the depth-damage functions of industrial and  

commercial elements, and the adapted depth-damage functions for residential elements in three  

height categories. The process of loss estimation can be shown in the following equation:  

 

( )

1

( )

i n

x i i i

i

C D f d A

=

=

=   () 

Where C   stands for the economic loss estimation result. n  represents the total number of  

exposure elements. ( )x i  is the type of the i-th element and ( )x iD  is the maximum loss of the i-th  

element. id  is the depth of submergence of the i-th element and ( )if d  is the loss ratio of the i-th  
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element. iA  refers to the area of the i-th element.  

Comparing to the 984 euros per m2 monetary loss of residential buildings in 2010, the  

monetary loss of infrastructure and agriculture are respectively 12 euros per m2 and 0.02 euro per  

m2 according to JRC, only account for 1% or less. Therefore, the monetary loss estimate of  

infrastructure and agriculture is excluded in the study.  

 In this research, five storm surge scenarios are settled, ten administrative sub-zones are given  

four different risk levels for each defined typhoon scenario.  

  

4. Results and discussions  

4.1. Validation  

 The performance of coupled FVCOM-SWAN model is evaluated. Four typical typhoons  

(Vicente, Hato, Mangkhut, Khanun) are selected to validate the coupled model for the study region.  

The measured data of each typhoon are captured by Department of Natural Resources of Huizhou  

Bureau. Fig. 5 shows the maximum predicted water level and highest measured water level of the  

chosen typhoons. Relative error and absolute error are introduced to evaluate the model and Table  

1 displays the statistical results from Huizhou tidal station. It is seen that the predicted results are  

in good agreement with the measurements. The statistic result shows that the relative errors of the  

four typhoons range from 2.1% to 19.8%, and the absolute error varies from 4 cm to 54 cm.  

Therefore, the coupled FVCOM-SWAN model demonstrates a reliable competence in  

accomplishing the storm surge simulation task.  

  

Fig. 5. The predicted water level and highest measured water level recorded by Huizhou tidal  

station during different typhoon event  

  
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Table 1. The Relative error and Absolute error between maximum predicted water levels and highest  

measured water levels from Huizhou tidal station during different typhoon events  

Typhoon name Measured data (cm) Relative error (%) Absolute error (cm) 

Vicente (1208) 189 10.3 19 

Hato (1713) 274 19.8 54 

Mangkhut (1822) 329 6.5 22 

Khanun (1720) 201 2.1 4 

  

4.1. Hazard assessment  

 In the present research, five storm surge inundation scenarios are defined, which represent  

five different typhoon return periods: 10-year, 20-year, 50-year, 100-year, 1000-year respectively  

corresponding to minimum central pressure 940hPa, 930hPa, 920hPa, 910hPa, 880hPa, and the  

probability of occurrence are 10%, 5%, 2%, 1%, 0.1%. The simulation result is displayed through  

ArcGIS 10.8 software, and the inundation area and depth simulation results for each scenario is  

shown in Fig. 6. It is seen that the inundation area is spread over the coastal area in southwest of  

study area. In particular, for the 1000-year return period scenario, the inundation area exceeds 13  

km2 in the study area. Moreover, the presence of Double-Moon Bay leads to the extension of the  

inundation along the bay, contributing to severe disasters inland.  

 From the point of view of different scenarios, the area of inundation in direct proportion to  

the typhoon’s return period, and the proportion of inundation area increases from 14% to 31% of  

study area. When the return period is less than 50 years, most of the flooded area is considered to  

be in a high-level hazard zone, accounting for 75% for a 10-year return period and 67% for a  

20-year return period, and no zone in very high-level hazard. Basically, the inundation area covers  

land such as grassland, saline land, and some buildings near the estuary as the area is more  

susceptible to flooding because of the lower elevation and drainage from the estuary. As the return  

period goes up to 100 years, 34% and 36% of the flooded area are defined at a high-level hazard  

and very high-level hazard. When it’s 1000-year, the situation worsens with approximately half of  

the inundation area being considered in very high-level hazard. Typically, the flood extends from  

the margin of terrene, however, the southernmost region of the investigated area is characterized  

by a knoll covered by forest vegetation, which serves the dual purpose of water absorption and  

flood mitigation. In addition, the construction of embankments on both sides of Double-Moon Bay  

effectively withstands flooding. Nevertheless, because of the presence of the estuary, inadequate  

water absorption ability of coastal saline soil and the hydrological system, the inundation flows in  

through the estuary and spreads inland.  

  
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  

Fig. 6. The storm surge inundation simulation results of different typhoon scenarios. The base map  

is obtained from © GoogleMaps (map data © 2023 Google).  

  

4.2. Buildings’ characters extraction  

 Buildings are places where human populations gather and distribute, and contain amounts of  

property, which have great significance in quantitative risk assessment.  

4.2.1 TransUNet model training  

 The dataset construction area is chosen at southwest waterfront region of Renshan Town. The  

specific location is shown in Fig. 7. The chosen area is a typical area of the Huizhou coastal area.  

Apart from the seaside bungalows, the area contains some high-rise buildings that are identified as  

commercial hotels or resorts, while dense residential area is also widely distributed throughout the  

inland region. In conclusion, the chosen area contains different kinds of buildings with strong  

representativeness. Since most of the buildings in China coastal towns have the similar characters,  

the model trained on the representative region has the ability to identify buildings in other regions  

rapidly.  

The labels of the buildings in the area are generated by manually annotation, and the image is  

cropped to pixels with a size of 256*256. Besides, some of the images without buildings are  

filtered for preventing the effect of imbalance between the building samples and background  

samples. In the end, a total of 1200 labeled building dataset is constructed, and the dataset size is  

deemed sufficient when compared to previous study (Dixit et al., 2021; Ji et al., 2018). The dataset  

is then divided into a training set and a test set, with the ratio of 8:2. Data enhancement techniques,  

such as random hue saturation value, random shift scale rotate, flip, and rotate, are implemented  

during model training to improve the deep learning model's generalization performance and  

prevent overfitting.   
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 The training’s initial learning rate is set to 1e-5, and the learning rate adjustment strategy for  

improved training. The batch size is specified as 4, and the number of training epoch is 100. The  

model is trained on a NVIDIA RTX3060 GPUs.  

  

Fig. 7. The chosen area to make the training samples. The base map is obtained from ©  

GoogleMaps (map data © 2023 Google).  

  

4.2.2. Extraction result  

 Several effective indicators are introduced, including Recall, Precision, F1-score, and mean  

Intersection-over-Union (mIoU), to evaluate the performance of the deep learning model. Recall is  

the probability of being predicted as positive among actual positive samples. Precision, on the  

other hand, is the probability of being actually positive among samples predicted as positive.  

F1-score serves as an indicator that achieves a balance point between precision and recall,  

essentially being the harmonic average of precision and recall. mIoU is the mean ratio of the  

intersection to the union between predicted and true values for each category. True positive (TP)  

indicates the true samples that are predicted correctly by the model. False positive (FP) indicates  

the positive samples that the model incorrectly predicted. True negative (TN) and false negative  

(FN) refer to the number of samples that are correctly and incorrectly predicted as negative by the  

model. The equations of Recall, Precision, F1-score, and mIoU are as follows:  
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 The quantitative evaluation result is shown in Table 2, and the visualization results are  

illustrated in Fig. 8. As Table 2 shows, the recall score reaches 87% indicating that most of the true  

building pixels are predicted correctly, and Precision indicates that 82% of all building pixels are  

correctly detected. Moreover, both the mIoU score and F1-score exceed 80% manifest that the  

model can balance well between precision and recall. These results reflect the strong performance  
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of TransUNet in the building extraction task. After post-processing the result, such as boundary  

simplification, the building vectorization results can be used for further research in risk assessment.  

The overall result is shown in Fig. 9.  

Table 2. The statistical accuracy assessment of building footprint extraction  

Evaluation metric  

Recall (%)  87.03 

Precision (%)  82.04 

F1-score (%) 84.46 

mIoU (%) 83.38 

  

Fig. 8. Building footprint extraction result in study area. (a) Remote sensing images obtained from  

Jilin-1 satellite (© Chang Guang Satellite technology CO., LTD); (b) Extraction result; (c) Ground  

truth. The building is marked in white, and the background is marked in black  

  

4.2.3. Building height calculation  

 Through combing two methods mentioned above, the height information is acquired in units  

of meters. The number of floors is derived by dividing the acquired height information by the  

specified standard height of 3 meters, according to the China residential design standards. The  

general condition of building floor is shown in Table 3. Just as mentioned above, the buildings in  

study area are mainly for residential and commercial use. Since the study area is undeveloped, the  

high buildings and large mansions is relatively less common, and most of them are built for  

seaside resort. Instead, buildings with 5 floors or less are the mainstream in study area as respected,  

which the proportion can reach 76.5%. The building footprint extraction result and building’s  

height information extraction result can be found in Fig. 9.  

Table 3. Statistical results of building height in the study area  

Building floor Area (m2) Proportion (%) 

1-5  17537238.61 76.5 
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6-10 4996897.08 21.8 

11-20 342207.82 1.5 

20+ 54083.93 0.2 

  

Fig. 9. The building characters extraction result: (a) The schematic of the display area; (b, c)  

Building footprint result in area 1 and 2; (d, e) Building height result in area 1 and 2. The base  

map is obtained from © GoogleMaps (map data © 2023 Google).  

  

4.3. qualitative risk assessment  

Risk matrix is a risk assessment approach firstly developed by Electronic System Center,  

which was originally to assess the risk in the life cycle of purchase project (Garvey and  

Lansdowne, 1998). An additional qualitative risk assessment is conducted using the risk matrix  

method, incorporating improved land use data to highlight the superiority of building extraction in  

flood risk assessment.   

As is shown in Fig. 10(a), the concentrations of organic town of Dayuan village and  

Shazuiwei makes it in very high vulnerability level. Under the circumstance of defined 880hPa  

storm surge scenario, the inundation area spread inland which makes the majority area of Dayuan  

is regarded as moderate risk, and a fraction of the only very high risk area is distributed in  

Shazuiwei and north of Dayuan village. In the area of Yuye village, part of the south coastal area is  

considered in moderate or high risk level. That is mainly because the majority area of Yuye is  

defined as resort district except for a few areas of tidal flats, which is in high vulnerability.  

However, after referring to the result of hazard assessment, buildings in the area are not actually  

inundated, meaning the area should not be at risk level.  

Through comparing the Fig. 10(a) and Fig. 10(b), the enhanced land use data in the present  
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research demonstrates a higher ability to recognize vulnerability elements, which the type is  

buildings in the present research. The two red boxes in the figure highlight the noticeable disparity  

between the original and current results. The present risk assessment provides more refined risk  

assessment result compared to the original result, as the previously identified large hazardous  

areas are replaced with more detailed and smaller zones. This refinement is conducive for  

government or decision-makers to conduct disaster prevention measures, propose quick guidance  

for personnel evacuation and organize rescue operations in the event of a disaster.  

  

Fig. 10. The risk assessment maps before (a) and after (b) improvement for storm surge scenarios  

of 1000-year return period. The base map is obtained from © GoogleMaps (map data © 2023  

Google).  

  

4.4. JRC’s depth-damage function adaption  

 Fig. 11 illustrates the damage ratio given flood-depth after adjustment, respectively for one-,  

two- and more than three-story residential buildings. After adjustment, the damage of one-story  

residential building function is significantly enhanced, and the loss ratio reach 1 early, which is  

explicable as 2m-depth flood almost submerges the entire building, resulting in a potential loss of  

the maximum property value. On the contrary, the loss ratio for multi-story residential building is  

decreased relative to the original function, it reaches the same level as in the original function  

when the water depth reaches 5 meters. Furthermore, the function of a two-story residential  

building is quite similar to that of a building with three or more stories. This can be attributed to  

the flood's effect on buildings with six meters or less depth being nearly the same, on account of  

the flood can’t overwhelm the entire buildings.  

 Although JRC provides the maximum monetary damages, they are computed for Beijing in  

2010. However, there is a substantial difference in the level of development between Beijing and  

the study area. For better matching the financial level in study area, adjustment can be achieved  
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based on scaling the maximum monetary damage value with the GDP ratio according to Huizinga  

(2007). Based on the 2010 GDP of Beijing of 14113558 million yuan and the GDP of Huizhou of  

172995 million yuan, the maximum monetary damage is adjusted by equal proportions. Besides,  

the price level also needs to be adjusted to the 2022 price level. According to the World Bank, the  

Chinese consumer price index (CPI) has changed from 100 in 2010 to 131.9 in 2022, the tendency  

of variation and the adjusted maximum monetary damages are shown in Fig. 12.  

  

                                        (a)                                                                           (b)  

Fig. 11. (a) The depth-damage function proposed by JRC; (b) The adapted depth-damage function  

for residential buildings in different floors  

  

                                       (a)                                                                            (b)  

Fig. 12. (a) The variation trend of Consumer price index released by World Bank; (b) The  

maximum monetary damage per m2 for each type of exposed elements in China (in 2010 and in  

2022).   

  

4.5. Quantitative risk assessment  

 Loss assessments of five storm surge scenarios are computed for return periods of 10, 20, 50,  

100, and 1000 years, through employing the method in section 3. The estimate monetary damage  

is summarized in Table 4.  

 The statistical data in Table 4 demonstrate an increase in the affected area and total economic  

loss with an increasing return period. Comparing to the total affected area of 131533.12 m2 and  

the total economic losses of 9330517.49 euros with the 10-year return period, the  
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corresponding estimate result with 1000-year return period is 917437.99 m2 and 68364923.25  

euros, which is both approximately seven times higher. This indicates a proportional  

relationship between the extent of regional impairment and the return period of a typhoon.  

Although the impacted area for the 20-year and 50-year return periods exhibits relative  

proximity as the different is 24118.26 m2, there is still a significant disparity in economic  

losses. According to the inundation result above, that’s because the inundation area of two  

return period is nearly the same except for the slight difference in the northeast of the study  

region, but the flood depth of 50-year intensified, which causes more monetary damage. In  

terms of inundated building types, in case that study area is characterized as a tourism and  

fish breeding area, the proportion of economic losses in industrial is relatively low. The losses  

of residential buildings and commercial buildings is comparatively close, up until the severity  

of storm surge reach 50-year return period. At this point, the losses experienced by residential  

buildings exceed those incurred by commercial buildings by more than double. The fact can  

be explained by the commercial buildings area mainly constructed by the seaside for better  

turnover therefore both type of waterfront buildings is impacted. However, as the severity of  

the typhoon worsens, more residential settlements inland are flooded, resulting in a swift  

increase in economic losses for residential buildings.   

Table 4. The statistic result of the quantitative risk assessment for five defined typhoon scenarios.  

Scenario Elements Area (m2) 
Economic 

losses (€) 

Total losses 

(€) 
Probability Risk (€) 

10-year (940hPa) 

Residential 94847.11 4910882.27 

9330517.49 0.1 933051.75 Commercial 36163.62 4281840.09 

Industrial 522.39 137795.12 

20-year (930hPa) 

Residential 216010.31 7872861.19 

13665211.91 0.05 683260.60 Commercial 55423.59 5602828.01 

Industrial 522.39 189522.71 

50-year (920hPa) 

Residential 237572.35 16509796.15 

24607011.73 0.02 492140.23 Commercial 57979.81 7775321.70 

Industrial 522.39 321893.88 

100-year (910hPa) 

Residential 291759.48 19857901.69 

28446797.47 0.01 284467.97 Commercial 75123.51 8194736.70 

Industrial 833.39 394159.08 

1000-year (880hPa) 

Residential 762570.09 49295364.67 

68364923.25 0.001 68364.92 Commercial 149457.01 17907591.59 

Industrial 5410.89 1161967.00 

  

 Based on the economic losses estimation result for five storm surge scenarios, through using  

zonal statistics method on the data of administrative sub-zones in the study area, the quantitative  

risk assessment is conducted. The economic losses and spatial distribution of storm surge risk for  

ten sub-zones in five different scenarios are shown in Fig. 13. The zonation statistics result map of  

each sub-zone is defined at four different risk levels (very high, high, moderate, low). The  

classification of risk levels is obtained by categorizing all zonal statistic result based on quantiles.  

 As is shown in Fig. 13, Dayuan village is considered in very high risk for every defined  

typhoon scenario. Through analyzing the geographical characteristics of the study area, it can be  
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found that although Dayuan is a relatively inland village, it’s surrounded by the watercourse of the  

estuary of Double-Moon Bay. Due to the existence of flood control dam, both side of the bay offer  

a measure of protective effectiveness, which result in the water level rises in inland watercourse,  

and further causes flooding of residential buildings in Dayuan village, leading to massive financial  

losses. In contrast, Foyuan village is also a village with a relatively large area, the risk is at  

moderate level for 10, 20-year return period, and the level escalates to high for 50, 100-year return  

period and reaches very high in 1000-year. Considering the presence of the knoll, the spread of  

inundation is hindered. However, as typhoon becomes more severe, the inundation hit the western  

buildings in the region, which led to the phenomenon of progressively escalating risk level. In  

terms of those villages with relatively smaller sizes, due to the protection of dam, Xinliao village,  

Xin village, Caijia village all are defined in relatively low risk level, although the regions with a  

high density of buildings. Shazuiwei and Yuye village in different return period are considered in  

different risk level, the cause of this phenomenon might be that apart from the higher density of  

buildings, the buildings in Shazuiwei are distributed in coastal area, combing the impact of  

inundation of both sides as it’s located at the outermost part of the gulf. Consequently, the risk  

level in Shazuiwei remains consistently high as opposed to gradually increasing like in Yuye  

village. Although they are located at the outermost part of the study area, the quantitative risk level  

of Daao village and Harbor community is gradually increasing for different return period, but it’s  

not as serious as the other village, which can be explained that these locations exhibit elevated  

topography.  

 The quantitative risk assessment and zonal risk maps can assist the government or decision-  

makers in recognizing the specific economic losses of each sub-zones, so it’s helpful to identify  

the areas that are more susceptible to experiencing significant losses, which allows them to  

develop disaster prevention measures, for example constructing disaster prevention facilities,  

budget allocation for disaster prevention and planning evacuation strategies. Besides, establishing  

the quantitative risk for different typhoon periods can enhance the decision makers understanding  

of the potential vulnerability in each sub-zone, and facilitates the implementation of appropriate  

preventive and disaster relief measures facing different typhoon intensity.  
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  

Fig. 13. The zonation maps of the quantitative risk assessment for five defined typhoon scenarios:  

return period (a) 1000-year, (b): 100-year, (c): 50-year, (d): 20-year, (e): 10-year. The base map is  

obtained from © GoogleMaps (map data © 2023 Google).  

5. Conclusions  

 These years, the academic research on storm surge risk assessment has been greatly  

developed due to climate change and financial growth in coastal area. However, the quantitative  

risk assessment is inexecutable in the undeveloped area since on account of the lacks of building  

characters and damage assessment data. Target at the question above, the purpose of this paper is  

to propose a method for conducting refined storm surge risk assessment quantitatively based on  

deep learning and GIS techniques. Firstly, the reliable coupled FVCOM-SWAN model is utilized  

to simulate five defined storm surge scenarios. Facing the challenge of the absence of data, a deep  

learning method TransUNet is applied to extract the building footprint data for refined extraction  

of exposed elements, and buildings’ height data is acquired through UAV. To compensate for that  

the available depth-damage functions do not taking building’s height into account, the functions  

are adjusted for buildings with different floor and consequently to perform more refined monetary  

losses calculations in five defined scenarios. Eventually, the quantitative risk assessment and  

zonation maps of the study area are generated base on GIS techniques  

 The quantitative risk assessment result of the study region shows that on account of the  

existence of estuary and the gathering of buildings, Dayuan village presents the high-risk level in  

all defined typhoon scenario, and the economic loss risk is large. The flood control dam provides  

protection of Xinliao village, Xin village, Caijia village, which prevents the regions suffering large  

economic losses as the typhoon return period is 10-year and 20-year. However, the storm surges,  

under the typhoon scenarios that the return period is greater than 50-year, can overwhelm the  

existed dikes, and both the commercial buildings and residential buildings suffer heavy economic  
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losses. Therefore, it’s necessary to make land use planning and adjustment especially in Dayuan  

and Shazuiwei as they are under very high-risk level to prevent the impact and losses caused by  

storm surges. Besides, the regions that is nearest to the sea doesn’t mean they suffer greater  

potential economic loss, as the risk level of Daao village and Harbor community are considered at  

a relatively low level because of the topographical characteristics and the distribution of buildings.  

 The study provides a framework for refined quantitative storm surge risk assessment  

targeting the problem of acquiring exposure elements and the establishing multi-variable empirical  

depth-damage functions, as a consequence of missing data in underdeveloped regions. The  

generated results can help the decision-makers to identify the areas that are susceptible to  

experiencing significant losses efficiently, and help the respective authorities with disaster  

prevention, future land use planning and material deployment. Furthermore, it is important to  

remark that, the methodology of this paper has general applicability, since the applied models are  

publicly available. Thus, there is also potential for further application. For example, the  

framework can be applied in other coastal areas in China, as they have similar characters, which  

also means there is a possibility to utilize in larger scales. Furthermore, the framework can also be  

performed in other types of disasters, such as flood, earthquake, and mudslide. Consequently, the  

proposed methodology demonstrates an extensive relevance to the scientific community.  

There is still room for improvement in this study. The current study relied on manual labeling  

in terms of distinguishing between functional areas to conduct risk assessment. In the future study,  

efforts will be made to distinguish the types of exposure elements in a more objective way, based  

on diverse data sources such as social media Point Of Interest (POI). Additionally, exploring the  

activity patterns of the population through multiple sources of data including taxi trajectories and  

smart cards can contribute to the consideration of population risks in different storm surge  

scenarios, thereby prompting more comprehensive risk assessments.  
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